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OPTIMAL-ORDER NONNESTED MULTIGRID METHODS 
FOR SOLVING FINITE ELEMENT EQUATIONS 

III: ON DEGENERATE MESHES 

SHANGYOU ZHANG 

ABSTRACT. In this paper, we consider several model problems where finite el- 
ement triangular meshes with arbitrarily small angles (high aspect ratios) are 
utilized to deal with anisotropy, interfaces, or singular perturbations. The 
constant-rate (independent of the number of unknowns, the smallest angle, the 
interface discontinuity, the singular-perturbation parameter, etc.) convergence 
of some special nonnested multigrid methods for solving the finite element sys- 
tems on such degenerate meshes will be proved. Numerical data are provided 
to support the analysis in each case. 

1. INTRODUCTION 

To be a complete method for solving boundary value problems, not only 
should the method provide a discretization scheme to approximate the PDE, 
but also it should include a fast algorithm to solve the resulting discrete linear 
systems. The combination of the two determines the efficiency of the numerical 
method. Multigrid iterative methods provide optimal-order solvers for many 
finite element systems (cf. [18, 11] and the references therein). In a standard 
multigrid method, a nested family of triangular meshes is generated from an 
initial mesh by connecting midpoints of edges sequentially. But this sequence 
of nested grids may not be economical in many situations. Other refinement 
methods should be included in the multigrid method. Naturally, one would re- 
lax the condition of nestedness of grids. In our previous paper [25], a nonnested 
multigrid method is considered for boundary value problems with corner singu- 
larities, where nonnested meshes with high refinements at corners are employed. 

Meshes with high aspect ratios (high refinement in some particular directions) 
are encountered often in practice, owing to the geometry of the domain, or to 
the roughness of the solution in some directions. We will study some model 
cases only in this paper. In ?2, we will define a nonnested multigrid method 
to solve Poisson equations where finite element meshes have high aspect ra- 
tios. In ??3 and 4, a framework is presented to analyze nonnested multigrid 
methods on some degenerate meshes. Numerical data presented in ?4 show 
that the convergence rate of nested multigrid methods deteriorates when the 
minimal-angle condition is violated, while the rate of the new nonnested multi- 
grid method remains the same. In ?5, two approaches will be studied to solve an 
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anisotropic, singular perturbation problem, and the multigrid method is shown 
to be of constant convergence rate in both cases. In ?6, the nested multigrid 
method is shown to have constant contractivity which is independent of inter- 
face jumpings and mesh sizes, when applied to solve for an interface problem 
in which the interface is covered completely by mesh lines. Also in ?6 the 
nonnested multigrid is proved to have a constant rate of convergence, too, if 
a narrow region along the interface is covered by skinny triangles. Finally, in 
?7 we will show the constant contractivity of a nonnested multigrid method for 
the finite element equations arising from discretizing a convection-dominated 
convection-diffusion equation by either high-aspect-ratio meshes, or the stream- 
line diffusion method. We should emphasize, however, that the domains in all 
the problems considered are squares, and that the meshes are "regular" in the 
sense that all elements are right triangles with one horizontal and one vertical 
edge. The analysis is not ready to be extended to general domains or to gen- 
eral nonconstant-coefficient problems. But the method should be applicable to 
general problems. There is one more remark. Some results in ??4-5 might also 
be obtained by doing Fourier Analysis as, for example, in [1 1], but not those in 
??6-7. 

To treat the meshes with small angles (of high aspect ratios) in the multigrid 
method, we modify two ingredients of the multigrid method while retaining its 
principles. The usual fine-level smoothing is replaced by a weighted smoothing 
where the weight at each node depends on those triangles carrying the node and 
on the local diffusion coefficients. Only those coarse meshes which are coarser 
in some directions are permitted in the coarse-level correction. The first modi- 
fication is also necessary in the multigrid method for nonquasiuniform meshes 
(cf. [25] and the references therein). As in the standard multigrid method, the 
new fine-level smoothing reduces high-frequency components of iterative er- 
rors "uniformly" over the whole domain, while the new coarse-level correction 
corrects all low-frequency error components. 

The approximation of finite elements with arbitrarily small angles has been 
studied in [3] and [13]. However, we do not use these estimates in this paper, 
nor do we use the elliptic regularity assumption. One could use approxima- 
tion and regularity theories, but one would usually obtain a convergence rate 
depending on the minimal angle, or the singular perturbation parameter. The 
convergence of the multigrid method without elliptic regularity has been studied 
by Bramble et al. in [9]. Nonnested multigrid methods are considered in [8], 
too. The multigrid method for interface problems (finite element equations) 
can be found in [22] and [9]. Other related works will be mentioned in the 
subsequent sections. 

2. DEFINITIONS 

In this section, we define a nonnested multigrid method by considering finite 
element solutions of the following Poisson equation: 

(2.1) 
-Au = f in Q := (0, 1) x (0, 1), 

u = 0 on ai. 
The multilevel finite element spaces, { Vk c Ho () k = 1, 2, ...}, consist of 
continuous, piecewise linear functions (cf. [10]) on meshes {$k, k = 1, 2, .. . } 
as shown in Figure 1, where a coarse mesh is coarser only in the xi-direction. 
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That is, refinements take place in the xi -direction only. Further, each mesh 
9k is uniform in the xi-direction and the x2-direction separately with mesh 
sizes hk and Hk, respectively. Therefore, hk = hk- l /2 and Hk = Hk- l . The 
growth rate of the number of multilevel unknowns is about 2. We will consider 
some other meshes later. For convenience, we let the aspect ratio be 

(2.2) Pk :=hk/Hk < 1. 
Obviously, the multilevel finite element spaces are not nested: Vk-l ? Vk. We 
remark that one can alternatively refine the mesh in each direction. 

We define the bilinear form associated with the Laplace operator and a dis- 
crete inner product (scaled 12 inner product) as follows: 

(2.3) a(u, v) := VuVvdx VU, V E Vk, 
Q 

(2.4) (u, V)k := Z -k u(n)v(n) Vu, V E Vk, 
nEAX hk 

where 4k is the set of vertices in the triangulation Xk . We note that one would 
get different weighted fine-level smoothings by defining different discrete inner 
products (' , *)k. This can be seen from (2.9) and (6.2). Let Ak: Vk -+ Vk 
be the symmetric, positive definite operator defined by (AkU, V)k := a(u, v) 
VV E Vk. As usual, we define a family of discrete norms by 

(2.5) 1IIIVIIIk :=(Akv,V)k VVEVk, O<s<2. 

For any V E Vk, 

IIIV I1, k = a(v,v) and IIIvII0,ok = (V V)k. 

Let Ik: Ho' (Q) n C(Ki) ) Vk be the usual Lagrange nodal-value interpolation 
operator. Let the vector space Vk-l be the image of Ik when restricted on 
Vk-I 

(2.6) Vk-l := Range(Iklvk1). 

We note that Ik: Vk-l - k-, is a one-to-one and onto mapping. (In general, Ik 
may be singular in the sense that IkV = 0 for some 0 $ V E Vk-l if 4lk ? ; 
cf. [23].) We introduce two auxiliary operators for the two common coarse-level 
corrections in the nonnested multigrid method, 

(2.7) Qk-1: Vk Vk-1, a(Qk-le, v) = a(e, IkV) Vv E Vk-l, 

Rk-1 Vk ` Vk-l, a(Rk-le, v) = a(e, v) VV E Vk-l 

Finite element approximations of (2.1) are defined as follows: Find Uk E Vk 
such that 

(2.8) a(uk, v) = F(v) VV E Vk, 

where F(v) = fA f(x)v(x) dx. One kth-level multigrid iteration is defined 
(recursively) by the following two steps (cf. [5]) to produce a new iterative 
solution wm+l (for Uk in (2.8) or for q in (2.11)) from a given initial guess 
w0. First, m fine-level smoothings will be performed: 

(2.) C}=s, _s sAw -'(F(v) 
- 

a(wl-, . v) VV1 E Vk, I < 1 < m) 
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where 'k is the maximal eigenvalue of the Ak in (2.5) and F(v) is either 
defined in (2.8) or in (2.1 1) below. The second step is a coarse-level correction: 

(2.10) Wm+l =Wm+Ikq, 

where q E Vk- l is the iterative solution, obtained by doing p (> 1) (k - 1 ) st- 
level multigrid iterations with 0 initial guess for the residual problem: Find 
q E Vk - such that 

(2.11) a(4, v) = F(IkV )-a(wm, IkV) =: Fne(V) VV E Vk-l 

3. PRELIMINARY ANALYSIS 

In order to prove the constant rate of convergence for the nonnested multi- 
grid method, we need a few lemmas concerning stability and approximability 
properties of the operators Ik and Qk defined in ?2. In the next two sections, 
we use explicit constants instead of the generic constant C in the estimation. 
Since we consider a special model problem, explicit constants may better exhibit 
the idea in estimation. 

Lemma 3.1. Let V E Vk. If IliVil0 k < CoIII VIIIlk for some CO > 0, then 
liv1liii k < COIIIv1112k. 

Proof. Let 0 < al < a2 < ... < a, be the eigenvalues of Ak: AkOi = ai0iO 
where IIIOi6 IIIk = 1 and n := dim Vk . We can expand v in the eigenvector 
basis: v = vi0=lv16. Consequently, IIIVIII2k = E v a .. For convenience, we 
let a,n+ = oo. We denote the index io such that Co-2 < ai0 and Co-2 > as for 
all i < io. By separating positive and negative terms, the lemma is proved as 
follows: 

io-1 n 

C02IIIVIII2 1-1IVI112 k =-E vi(1-aiCO2)ai + Ev?(aiCO2-,)ai 
i=l i=io 

io-1 n 

(3. 1) > -a>i E vi2(l - aj!C02) + aj!o E vi?(aiC02 - 1) 
i=1 i=io 

- 

aio ( V~i CO - 1)) = a i ( COIIVllll k - IIIVIIIk,k) > 0 - 

Lemma 3.2. Let B = tridiag(-B-1I Bi Bj+1) be a block tridiagonal matrix, 

Bo + B1 -B1 
-B1 B1 +B2 -B2 

< ~~~~-Bn- I Bn_ I + Bn 

where Bo, ... , Bn are symmetric and nonnegative semidefinite. Then, so is B. 

Proof. Let X = (X1, X2, ... , Xn) be an arbitrary vector in block form and 
Xo = Xn+j = 0. We need to show XTBX > 0; this is done by the Cauchy- 
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Schwarz inequality: 
n 

XTBX = EX`T(-Bj_lXi_1 + Bj1X` + BiXi - BjXi+i) 
i=1 

n _XiTBi- IXi + Xil I Bi- IXi-I 
2 

+XTB- Xi+ X7TBX XiTBiXi + Xl+1 BBiXi+ +I i_lXi Xi i- 2) 

=X1T BOX + XnTBnXn > 0. 

Lemma 3.3. For all u E Vk, there holds 

(3.2) IIIIkIk-1UIII2,k < 2111uIII2,k 

Proof. We will do a direct estimate. We scale the usual nodal basis by hk/H3 
to be our basis {IPOn} for Vk. The function (On is a hat function having nodal 

value hk/HkI at the node n and zero values at the remaining nodes. Let 
U = (uI, u2, ...) be the coefficient vector of a function u= EnUn (n With 
this special basis, we have, for all u, v E Vk, that 

(u, v)k = UTV, a(u, v) = UTAkV, and IIIUIII2k= UTAkAkU, 

where Ak is the matrix form of the operator Ak . The matrix Ak is symmetric 
and positive definite, with the (i, j)th element being a((oj, (9). By a simple 
calculation, one can find that the component of Ak U at the index corresponding 
to node i (see notations in Figure 1) is 

(3.3) (AkU)i = PkHk (Pk (2ui - Uh - Uj) + Pk(2Ui - Uc - Um)), 

where Pk = hklHk as defined in (2.2). Summing over all interior nodes of 5k 
(the set is denoted by Ak), we get 

(3.4) 11IUIII2,k = E p2Hk 4(pk1(2uj - Uh -Uj) + Pk(2Ui -Uc -Um))2. 
iEAk 

We now show that 

(3.5) IIIUIII2,k > E p2Hk 4(pk2(2u-Uh-Uj)2 + p2(2ui- - Um)2). 
iEAk 

hk-l 'k hk 
_ v 1 - / / Z L~v I 
I /m nI m n 

fk-I Hk 

9 i k g h i jk 

a c fa Ib C df 

FIGURE 1. Two-level triangulations. The fine grid is finer only 
in one direction 
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We order the nodes in Xk along the xi-direction first, then along the x2- 
direction. Let M = tridiag(-pj- 1, 2p-1, -P- 1), and 

M' /2I -I 
M -I 2I -I 

(3.6) M) and M2 =Pk -I ) 

< M, < -I 2I, 

where I is an identity matrix. It follows that Ak = pkHk-2(Ml + M2) and 

(3.7) IIIUIII2k = UTAkU 

(*)= p2H,4(UT (M2 + M2) U + UT (MIM2 + M2MM)U). 

To show (3.5), it suffices to show that the symmetric matrix M1 M2 + M2M1 is 
nonnegative semidefinite. Because M1 M2 + M2M1 is a block tridiagonal matrix 
of the form B in Lemma 3.2 with all Bi = tridiag(- 1, 2, -1), inequality (3.5) 
follows. 

Let v = IkIk-I u. We can find the coefficient vector V from U. For exam- 
ple, Vh = (ug + ui)/2 (see Figure 1). Similarly to (3.3), we have 

(AkV)i = PkH-2 (p 2ui-ug-Uk + Pk(2u u um)) 

(AkV)h = PkH2(Pk 2u aUl + Pk 2u UCUm) 

Therefore, 
(3.8) 

11 11112 (Pk P 2(2Ui-ug-U )2 + 3p2(2ui Uc Um)2 

IllkI-I + pe#- Uj~ k + Pk 2 ) 

iEk- I k8k E Pk (2 (2ug - Ua-U)2 + p2 (2ui - Uc - Um) ) 

To bound IIIIkIkl2 ,k by IIIIII2 k,we insert thePentries2of U associatedwith 
the nodes in AkL_l into the sum (3.8) to get 

(2u1- Ug - Uk)2 ? 8(2 - UhP - + 4(2Ui -Ug-uu)2 + 4(2ui - - Uk)2. 

From (3.5) and (3.8) we conclude that IPIIkIkU II IU k ? 4IIIIII,k k* 

Lemma 3.4. For all V, W e Vk-l, there holds 

(3.9) ja(v, W) )-a(Ikv, Ikw)I ? pkHk IIIIkvIIIl , k IIIWIII2, k-1 

Proof. We consider a(v, W) and a(Ikv, IkW) on a rectangle [acig] from the 

coarse-level triangulation (see Figure 1). Let Vy = v (a) - v<(,), where v(a) is 
the nodal value of v at a vertex a. By the linearity of the functions involved, 
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we have 

Ijaig] Vv Vw dx = 4 (Vcawca + VigWig) + Pk (VicWic + VgaWga), 

Ijacig] VIkVVIkw dx = (VcaWca + vigwig) + (vicwic + VgaWga) 

Vic + Vga Wic + Wga 
+ PK 2 2 

Summing over all rectangles- in T 1 , we obtain that 

(3.10) IIIV22I2Pl = Z+ v ) + pk(v4 + v2 
all [acig] 

IIIIkVI1k = (v2 +v 

and that 

(3. 1 2) a(v, w) )-a(Ikv, Ik'w) = P4k(vc- Vga) (wick-Wga ) 
all [acig] 

Combining the term v1c(w1 -Wga) from the square [acig] and the term 
V(i - wkf) from the square [cfki] in the sum of (3.12), we can rewrite 

it as 

(3.13) a(v, w) -a(IkV , IkW) = Pk Vic(2WicWga -Wkf)g 
iE5t_1 

Noting the relation between nodal values and vector representations, for exam- 
ple, wi = w(i) Hk,/(2hk), we can write down the corresponding form of (3.5) 
in Vk-l as 

IIIW1112k-1 
> Z p2H4(pj2(2w(i) - w(g) -w(k))2 

iE57_1 

+ 8p2(2w(i) w(c) - w(m))2). 

We then apply the Cauchy-Schwarz inequality and (3.10)-(3.13) to get 

ja(v, w) - a(Ikv, IkW)I 
( ~~~~~1/212 

( 3V 1 4(2Wic - Wga Wkf )21 

2~~~~~~~~/ 

? I 
lIlIkVIII k 2Pk (2w (i) - w (g) - W (k) )2 

iE5'Tk- 

? PkHkIIIIkVIII| ,kIIIW1112,k-1 0 

Comparing (3.10) and (3.1 1), we can easily get the next corollary. 
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Corollary 3.5. There holds 

(3.15) 2IIIvI111,k-1 < IllIkVI i,k < IIIVIII1 k-1 VV E Vk.l 

Corollary 3.6. There holds 

(3.16) IIIQk-1WIlIIjk-1 < IllIIW1111k VW E Vk. 

Proof. By Corollary 3.5 and the definition of Qk-1 in (2.7), we get 

IIIQk-1WIIIl,k-1 = supa(Qk-l W, v) = sup a(w, IkV) 

< IIIW11I1 ,k SUP IIIIkVII 1,k < IIjW1111 ,k' 
V 

where the supremum is taken over all v E Vk-l with IIIVI1,k-l = 1 LI 

Corollary 3.7. For all v, w E Vk-1, there holds 

(3.17) la(v, w) - a(Ikv, IkW)I < 2Pk 2Pk |||IkV|||l kIIIWIII1k-1 

Proof. By the Cauchy-Schwarz inequality and (3.10)-(3.12), we can show (3.17) 
similarly as in (3.14). We omit the details. Lo 

4. CONSTANT RATE OF CONVERGENCE 

We will prove in this section constant convergence rate for the 2-level, and 
the W-cycle multilevel nonnested multigrid method defined in ?2. We start 
with a few more lemmas. 

Lemma 4.1. For ail U E Vk, the following inequalities hold: 

(4.1) jjju-IkIkI1UIIIo k < -Hk IIIU - lklk-1UII1,k, 

(4.2) ||uI-IkIk_1uIIIj,k < (1 + ) IIIU1111,k. 

Proof. Let v = u - IkIk- 1 U . Considering IIIV1112k on a rectangle [bcih] from 
the mesh gk (see Figure 1), we have 

J jVvj2 dx = 21 ((v(i) - v(h))2 + (v(c) - v(b))2) 
(4.3) ciXh] 2Pk 

+ Pk ((V(i) - v(C))2 + (v(h) - v(b))2). 

Summing (4.3) over all rectangles of 3T, since v is linear on each triangle of 
3k and vanishes at all nodes of Tk- , we can show (4.1) as follows: 

1,k PE k { v(h) + 2 (v(h) - v(b))2} 

> E -v (h)2 = 2Hk 2IIIvIIok' 
Pk 

,k 

where Akl 1 is the set of midpoints of the horizontal edges of Tk-I . We remind 
the readers that v(h) = u(h) - u(g)/2 - u(i)/2 at a midpoint h E vkl-1 (see 
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(3.8) and Figure 1). Once again, summing (4.3) over all rectangles of 9k, we 
get 

IIIV111k = P -(v(h)2 + v(b)2) + Pk (v(h) -v(b))2 
[acig] 

- Z 4 ((2u(h) - u(i) - u(g))2 + (2u(b) - u(a) - U(C))2) 
[acig] 

+ 4k((2u(h) - u(i) - u(g)) - (2u(b) - u(a) - U(C)))2 

< Z 2-,(Uhi + Uhg + Uba + Ubc) 
[acig] 

+ Pk (U2i + U2g + U2a + U2c + 2U2g + 4Ubh+2UC 

< (1+ Pk) tt12 ? IIIU1111,k 

where notations like Uab = u(a) - u(b) are used. O 

Corollary 4.2. The following inverse inequality holds: 

(4.) IIIV1111,k < 2,\f2fH |||1V|||O k VV E Vk. 

Proof. Once again, summing (4.3) over all rectangles in 3k, we conclude, by 
Pk < 1, that 

IIIV1I2 k < E(4pj 1 + 4pk)V(i)2 < 8Hr2I||V|||O,k. LI 

iEg9v 

Lemma 4.3. There holds 

(4.5) 1112vlIo < 2111vi|||o k-1 VV E Vk-l 

Proof. By Definition (2.4), we have (see Figure 1) 

IIkVIIIo k = z hiLV(i)2 + h k ( 2 ) 

H3 
< 2 E hk v(i)2 = 411jvjjo kV . 11 < 

E 
2 

1hk 
k1 

We now prove a lemma showing an approximation property of the opera- 
tor Rk-l defined in (2.7). We remark that Rk-l is an a(. , .)-orthogonal 
projection operator from the linear vector space Vk to its subspace Vkl. 

Lemma 4.4. For all V E Vk, there holds 

(4.6) |||v -Rk-lVIIIl,k < -=HkIIIvIll2,k. 

Proof. Noticing Rkl1v E Vk, we can apply the Cauchy-Schwarz inequality to 
obtain that 

|||v - Rk-1v| 1k = a(v - Rk-1v, v) < jljv - R vIIo,kII2,k. 
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Let w E Vk with IIIWIlIo,k = l and u = A-1w, where the operator Ak is 
defined before (2.5). By (2.5), IIIU1112,k = 1 . Since IkIk_lU E V'k-, we can 
insert IkIk- 1u in our estimation to get 

iljv - Rk-lV I10 k = sup(v - RklV, W)k = supa(v - Rklv, u) 
w u 

= sup a(v - RklV, U - IkIk_1u) 
u 

< |||v - RklvIIIj k SUp IIIU - IkIk41UIi ,k 
U 

< 111v - Rk-1Vi kSUp(j ||| UIkIk4-1u12,k) 

3Hk 
< 2jv |Iv-Rk_lVIIIl,k, 

where the Cauchy-Schwarz inequality, Lemma 4.1, Lemma 3.1, the triangle 
inequality, and Lemma 3.3 are applied. The assertion (4.6) is proved by com- 
bining the above two inequalities. oi 

Theorem 4.5 (Two-level methods). Let q = q in (2.10). For any 0 < y < 1, 
there is an integer m independent of the level number k, such that 

llUk -Wm+lIIl1k < YilUk -WOIIIl,k, 

where Uk, wi, q, and q are defined in (2.8)-(2.1 1). 
Proof. Let the iteration error be denoted by el = Uk - wl, 0 < 1 < m + 1 . Our 
goal is to show IIIem+11 II,k < yIIIeo0III k . By (2.9)-(2.1 1), (2.7), and the triangle 
inequality, it follows that 

(4.7) IIIem+jIII ,k < lem - Rk-lemIIIi,k + IlIRk-lem - IkQk-jemIIIj,k 

The first term in (4.7) is analyzed in Lemma 4.4. To estimate the second term, 
by (2.7), the Cauchy-Schwarz inequality, and Lemma 4.3, we have, for any 
V E Vk-1,~ 

a(Rk-lem - IkQk-lem, IkV) = a(em, IkV) - a(Qk-lem, Qk-lIkV) 

(4.8) 
= a(Qk-lem, V - Qk-1IkV) = a(em, Ik(V - Qk-1IkV)) 

(4.8) ~ < IIIem1112 khhhIk(V - Qk-1 kV ) Io,k 

< 2IIIem,III2 khIV - Qk-1IkVIlo,k-1l 

Let w E Vk-l with IIIWIIIOk- 1 and u k- th 
(2.7) and (3.9), it follows that 

(4.9) (V - Qk lIkV, W)k-1 = a(v - Qk-lIkV, U) 
= a(v, u) - a(IkV, IkU) < PkHkIIIIkvIII|, k 

Taking the supremum over all such w in (4.9), we get IIIV - Qk-IIkV IIo k-I < 

PkHkIIIIkV IIIi, k * Noting (Rk- Iem-IkQk- Iem) E lk-I = IkVk-1 , we have shown 
by (4.8)-(4.9) that 

(4. 1-0) ||| IkQk lem ll, SUP a(Rk-lem - IkQk-lem, IkV) 

(4.10) IIIRk.lem - IkQk~1emIIIi k = sup IIIIkVIIIk,k 

? 2PkHkIIIemIII2,k. 
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Using (4.6) and (4.10) in (4.7), we have 

IIIem+l lii ,k ? (3l/v + 2Pk)HkIllemIII2,k. 

By standard estimates (cf. [5] or the following (4.14)) and Corollary 4.2, we 
have the following smoothing property for (2.9): 

Ilml2 k < (Akl2m) llleolill2k' (H /)||O|lk 

Thus, Illem+llll,k < Illeo0l,k(3V2 + 4Pk)/x/iV . Therefore, the theorem is 
proved by choosing m > (3V' + 4)2/y2 > (3V2- + 4pk)2/y2. OI 

We remark that the best possible coarse-level corrector Ikq in VkL_ for em 
with respect to the III* IIII k norm (see (2.10)) is Rk lem. The second term 

IIIRk-lem - IkQk-lem lil,k in (4.7) measures the perturbation to the projection 
in the nonnested multigrid scheme. When the aspect ratio is high, we may get a 
better estimate of this error by applying (3.17) instead of (3.9) in (4.7). In this 
way, it follows that 

IIIRk-1lem - IkQk-1em ll l,k 
(4.11) ~ ~ < 2Pk 2Pk Fleil (4.11) < +~~~/2P l |_m| k =: Clillemilill,k, 

where Ci P p2 
In general, the number of smoothings, m, has to be sufficiently large in the 

nonnested multigrid method (see a numerical example in [24]), owing to the 
violation of the projection property in the coarse-level correction. But m = 1 
would guarantee the convergence in the nested multigrid method (see [17]), even 
for nonsymmetric problems. For our model problem, we have by Corollaries 
3.5 and 3.6 that 

(4.12) lllIkQk-IVIIII,k < IIIVIIII,k VV E Vks 

This means that the iteration error would not be amplified in the nonnested 
coarse-level correction. We can apply (4.11 )-(4. 12) to prove constant-rate con- 
vergence for the W-cycle symmetric nonnested multigrid methods with one 
smoothing. In symmetric multigrid methods, m (post)smoothings are added 
after the coarse-level correction (2.10) (cf. [8]). That is, one cycle of the level-k 
multigrid iteration would generate W2m+l from wo by (2.9)-(2.1 1) and doing 
m smoothings (2.9) on wm+1. 

Theorem 4.6 (Symmetric W-cycles with one smoothing). Let m be a positive 
integer. Let the aspect ratio Pk be small enough such that the constant Cl in 
(4.1 1) is less than 36m/(36 + M)2. If 11- - q l1 ,, k- 1 < y2 lIIqll , k- 1, then 

lIluk - W2m+l li1,k < yIilUk - W0j111,k ' 

where y = 36/(36 + m), and q, q, Uk, and wi are defined in (2.9)-(2.1 1). 

Proof. Let the errors be denoted by el := Uk - wl1, 0 < 1 < 2m + 1 . Let Bk 
denote the multigrid reduction operator, i.e., e2m+1 := Bkeo. Inductively, we 
can show by (4.12) that Bk is selfadjoint and nonnegative in (a(., *), Vk) 
(see (4.13) below) and that 

Bk = SM(I - Ik(I - AB1)Qk-l)Sk _ 
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TABLE 1. Spectral radii of 2-level multigrid iterative operators 
for (2.1) 

Nested, quasiuniform Nested, degenerate Nonnested, degenerate 
grid p(CS) grid p(CS) grid p(CS) 

10 x 10 0.7329 10 x 8 0.7842 10 x 8 0.6705 
14 x 14 0.7416 14 x 8 0.8651 14 x 8 0.6063 
18 x 18 0.7450 18 x 8 0.9101 18 x 8 0.5708 
22 x 22 0.7467 22 x 8 0.9366 22 x 8 0.5499 
26 x 26 0.7476 26 x 8 0.9531 26 x 8 0.5369 

where Sk :=I - A1Ak is the smoothing operator defined by (2.9). Since Sk is 
selfadjoint, we have, by the induction hypothesis II I - qjjj1 ,k-1 < 221Illill ,k-1 
and the stability of the coarse-level corrections (4.12), 
(4.13) 

a(Bkeo, eo) = a((I - IkQk-l)em, em) + a(B2 iQk-1em, Qk-1em) 

< a((I - IkQk- 1)em, em) + y2a(Qk-1em, Qk-lem) 

= (1 - y2)a((I - IkQk-l)em, em) + y2a(em, em) 

= (1 - Y2)( llem - Rk-lemh11l k + a((Rk-l - IkQk-l)em, em)) 

+ y211lem 11l,k 

< (1 _ y2) 2Hk2hhIem 111k + (y2 + (1- y2)Cl)hhIemhh111k2 

where Lemma 4.2 in [25], (4.6), and (4.11) are used in the last step. By an 
eigenexpansion as in (3. 1) (cf. [5] or [ 17], for example), it follows by the equality 
I(1 - x)2m(1 + 2mx)IL- (o, 1) = 1 that 

(4.14) hhISmVhhI2,k +<2mik |IS vhh1, ? IIIV1112 VV E Vk. 

Therefore, by Corollary 4.2, 

a(BkeO, eo) <(1 _ y2) 38 (1e1112 - IllemIII2ik) + (y2 + Cj)IIIemI111k 

< Y(jjjeolilj,2 - illem 11121 )+ Yie 1112, k = 11ie01112k. ? (IeII,k~ - IefhI,k) + yIIIemIII,k = IIeII,k. 
The proof is completed by applying Lemma 4.2 in [25]. oI 

To conclude this section, we list the contraction numbers (the spectral radii 
of the multigrid iteration operators) of the two, nested and nonnested, multigrid 
methods with one smoothing (m = 1 in (2.9)) for the problem (2.8). For the 
standard multigrid method on uniform meshes, the iteration error is reduced 
by a factor about 0.75 after each iteration. However, when the meshes tend 
to degenerate, the factor deteriorates to 1 by the data in the second column 
of Table 1. The nonnested multigrid method defined via (2.9)-(2. 11) provides 
a constant convergence rate (about 0.5) independent of mesh levels or aspect 
ratios of the meshes. 

5. A PERTURBATION PROBLEM 

In this section, we consider an anisotropic, singular perturbation problem. 
In order to achieve constant rates of convergence in the multigrid method, we 
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FIGURE 2. Nested meshes, 8a c 8, and two intermediate 
meshes, Tb and Td 

could either choose nested grids with high aspect ratios, or choose nonnested 
grids where the coarse grids are coarser only in the larger diffusion direction. 
We will discuss first the case of nested meshes. One purpose of presenting this 
problem is to indicate a proof of constant convergence rate for the standard 
multigrid methods on uniform grids without any elliptic regularity assumption. 
The general multigrid methods on quasiuniform meshes have been shown to 
yield constant convergence speed by Bramble et al. recently in [9] without the 
assumption of elliptic regularity. 

We first consider piecewise linear finite elements on nested meshes (like 8; 
and 87 in Figure 2) with high aspect ratios to discretize the following problem: 

5.1) -all U - Oue022u =f in 2 = (0, 1) x (0, 1), 
(5.1) u=0 onOaQ, 

where 0 < e < 1. The mesh sizes in the xl- and x2-directions are denoted 
by hk and Hk, respectively (see Figure 1). We let the sequence of meshes 
be nested in a standard fashion, i.e., each coarse triangle is refined into four 
subtriangles by linking midpoints on the three edges. The aspect ratios remain 
constant on all levels, and we choose it to be 

(5.2) Hklhk = , k = 1, 2. 

Unlike the meshes in ?2, here we have hk = hkl/2, Hk = Hk1l/2, and 
Hk < hk (ust for the purpose of using the same figure). The bilinear form 
associated with (5.1) is a(u, v) = fa(aluaiv +e2u02v)dx. We replace the 
discrete inner product (2.4) by 

(5.3) (U, V)k = Z Hkhku(n)v(n) VU, v E Vk. 
nEAk 

We note that the norm induced by (*, )k is now equivalent to the L2( iQ) 
norm in Vk. The other definitions in ?2 remain the same. In particular, the 
finite element problems and the multigrid method are defined as in (2.8)-(2.1 1). 
But the interpolation operator Ik is omitted in (2.9)-(2.1 1) since Ik is now the 
identity operator. 

To analyze the multigrid scheme, we introduce two intermediate meshes (J7 
and .9d in Figure 2) between two consecutive multilevel methods (8a and 87? 
in Figure 2), both of which are coarser in one direction than the higher-level 
mesh and finer in the other direction than the lower-level mesh. We denote the 
Lagrange interpolation operator based on the grid T and 8d by Ib and Id, 
respectively. We can see immediately that 

IkV = V = IkIb(IkIdV) VV E Vk-, 

Ik_IV = Ik-lIbV VV E Vk. 
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We first calculate the equality analogous to (4.3) (see Figure 1 for notation): 

(54 Xj , ((U)2 + e(a2U)2) dx = H ((v (i)-v(h))2 + (v(c) - v(b))2) 
(5.) ih] 2k 

+ k ((v(i) - V(C))2 + (v(h) -V(b) ), 
2k 

where (5.2) is used. The idea of utilizing high-aspect ratio meshes can be seen 
clearly from (5.4). Once we choose the mesh ratio as in (5.2), e will not appear 
any more in the analysis (see (5.4) and (5.6) below). The discrete diffusion 
coefficients in the xl- and x2-directions are then the same (see (5.4)). The same 
argument as used in Lemma 4.1 will show (4.1) again in the new case, by (5.4) 
and (5.3). We should notice the difference, however, that nonzero nodal values 
of v - IkIk- 1v = v - Ik- Iv now occur on all midpoints of coarse-level edges, 
while they occur only on horizontal edges in Lemma 4.1. Further, comparing 
(5.8) and (5.4), we can prove (4.4) of Corollary 4.2. It is straightforward to 
show Lemma 4.3 again. To prove Lemma 3.3 in the new setting, we apply the 
old Lemma 3.3 twice as follows (see Figure 2): 

(5.5) 1 42IIkIk1U,II2,k = IIIIcIaUIII2,k = 111IcIb(IcId)UIII2,k 

* ~~~~~~~~< 211IIcIdUI112,k < 411JU1112,k - 

We can apply the old version of Lemma 3.3 when interpolating functions be- 
tween meshes 79 and T or between meshes 8c and Sd, although the bilinear 
forms are different here. In fact, the new version of (3.5) is 

(5.6) 11IUIlI2,k > Z Hk4((2uj- _Uj)2 + (2ui - Uc- U)2). 
iEAk 

Therefore, Lemma 3.3 holds when the IkIk- 1 there is replaced by IkIb or IkId 
(even the constant 2 in (3.2) is unchanged, since Pk < 1 is not used in the 
proof). Lemma 3.4 holds trivially, since the left-hand side of (3.9) vanishes 
because of IkV = v Vv E Vk-l . Thus, Rk-l = IkQk-_ . Therefore, we obtain 
that Theorem 4.5 holds and the (nested) multigrid method has a constant rate 
of convergence for the above problem: 

Theorem 5.1 (Nested multilevel W-cycle methods for anisotropic problems). 
For nested multigrids with the high aspect ratio defined in (5.2), the W-cycle 
multigrid method defined in (2.9)-(2. 11) with p = 2 converges with a constant 
rate, y, which is independent of the grid level k but depends only on the number 
ofsmoothings m, when it is applied to solve finite element equations arising from 
(5.1). 

In particular, letting e = 1 in (5.1), we proved without any elliptic regularity 
assumption that the standard multigrid iteration has constant rate of conver- 
gence when solving finite element Poisson equations on uniform meshes. We 
could give the convergence rate quantitatively. Braess and Verfurth studied the 
rates of a special multigrid method on some uniform meshes (cf. [7, 21]) and 
did not use the elliptic regularity either. 

We now consider solving (5.1) by finite elements on nonnested, but quasiuni- 
form, meshes. Owing to the anisotropic diffusion, the variation of the iteration 
errors in the x2-direction would be of low frequency if meshes are quasiuni- 
form. We therefore use meshes like in Figure 1, where coarse meshes are only 
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coarser in the xi -direction. Denoting mesh sizes in the x1 - and x2-directions by 
hk and Hk, respectively, we assume that hk Hk . The bilinear form a(*, * ) 
is again fa(O,ualv +e02uO2v) dx . But we do not use (5.3) as the discrete inner 
product ( *, * )k . The definition of ( *, * )k in (2.4) and the other definitions in 
?2 remain the same. We note that the discrete norm 11 Ilo, k is here equivalent 
to the L2 norm on Vk with the equivalence constants independent of k, since 
hk - Hk . 

It is straightforward to prove Lemma 3.3 and Lemma 3.4 in the new cir- 
cumstance, noting that the only change is to insert e in the estimation. For 
example, (3.5) becomes 

IIIUI12,k > Ej p2Hj74(pk 2(2u-Uhi-Uj)2 + E2p2(2u1 
_ 

U -_ Urn)2), 

where Pk 1 - In fact, (3.9) in Lemma 3.4 is improved to 

(5.7) ja(v, w) - a(Ikv, IkW)I < "1/2pkHkIllIkvill IIIWI112,k-1 

We note that Lemma 3.3 holds no matter in which direction the previous levels 
are coarsened, and no matter how small e is. However, Lemma 3.4 may depend 
on e. For example, if we coarsen the meshes in the x2-direction, (5.7) becomes 

Ia(v, w) - a(Ikv, IkW)l < e 1/2pkHkillIkvill lllWIII2,k-1 I 

and the convergence rates of multigrid methods will depend on e . The key point 
is to employ coarser meshes which are not coarser in the direction of small diffu- 
sion. The necessity of this special coarsening, in order to obtain a convergence 
rate independent of e in the multigrid method, can be seen also from (4.1). 
If we used quasiuniform meshes or nonnested meshes where coarsening is in 
the x2-direction, we would have an E-112 on the right of (4.1). Consequently, 
it appears that the standard nested multilevel, quasiuniform multigrid conver- 
gence rate would deteriorate as e -- 0. This is shown by the data in the second 
column of Table 2. Corollary 4.2 and Lemma 4.3 can be shown here routinely. 
Therefore, Lemma 4.4 and Theorem 4.5 hold: 

Theorem 5.2 (Two-level nonnested multigrid methods). Let the multilevel 
meshes and multigrid methods be defined as in ?2 and above, and let 0 < y < 1. 
There is an integer m independent of k or e E (0, 1) such that 

IIUk - WM+1l I 1, k < YIIIUk - WOII 1, k 

where q = q in (2.10). 

TABLE 2. Spectral radii of 2-level multigrid iterative operators 
for (5.1) where e = (8h2)2. Here, h2 is the mesh size in the 
x2-direction 

Nested, quasiuniform Nested, degenerate Nonnested, quasiuniform 
grid p(CS) grid p(CS) grid p(CS) 

10 x 10 0.7851 8 x 10 0.7312 10 x 10 0.6777 
14 x 14 0.8658 8 x 14 0.7386 14 x 14 0.6152 
18 x 18 0.9105 8 x 18 0.7414 18 x 18 0.5780 
22 x 22 0.9368 8 x 22 0.7428 22 x 22 0.5555 
26 x 26 0.9531 8 x 26 0.7435 26 x 26 0.5302 
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Finally, we list the convergence rates for two-level multigrid methods with 
one smoothing (m = 1 in (2.9)) in Table 2. From column 2 of Table 2, 
the standard nested multigrid methods on quasiuniform meshes clearly do not 
provide a convergence rate independent of e . Either by employing high-aspect- 
ratio meshes, or specially coarsened quasiuniform meshes, the multigrid method 
can retain a constant convergence rate for all e (column 4 and column 6 in Table 
2). 

6. AN INTERFACE PROBLEM 

In this section, we consider a simple model of interface problem. For the 
model problem, if mesh lines of finite elements can cover the interface line 
completely, the finite element method would yield the optimal order of approx- 
imation, 0(h), in the HI (Q)-norm (see [2], Figure 3(B), and column 3 of Table 
2). From Figure 3(B) the presence of the interface can hardly be seen from the 
nodal errors of the finite element solution. We will show, in this case, that 
the multigrid method on uniform, nested meshes can solve the finite element 
system in the optimal order of operations. In fact, it is shown that the rate of 
convergence of the multigrid method is independent of the jump at the inter- 
face. The standard multigrid theorem, for example, of Bank and Dupont [5] 
does not provide such an independence. Bramble et al. proved in [9] that the 
convergence rate for the multigrid method is independent of the jump for gen- 
eral interface problems, but the convergence rate depends on the level number. 
Some preliminary work on this subject can be found in [22]. Readers can find 
the multigrid method for solving finite difference interface equations in [1] and 
[1 1], where special treatment is needed in defining the finite difference scheme 
and intergrid transfer operators, while these problems are naturally resolved in 
the finite element method. 

If the interface does not match any grid line completely (a practical situation), 
the finite element method can provide only order 0(h'/2) approximability in 
the H1 (Q2)-norm (see Figure 3(C) and the data in column 5 of Table 3), since 
the PDE solution u E H3/2(Q). One can see in Figure 3(C) that the error of 
a finite element solution is large near the interface. We then consider a model 
case where the grids (cf. Figure 3(E') and 3(F')), with high aspect ratios in 
a local region of interface, are aligned along the interface. With such grids, it 
is shown numerically that the convergence order can be brought back to 0(h) 
in the HI (Q)-norm. Here, h = N-1/2 is a pseudo mesh size, where N is 
the number of grid points. We will show that the two-level multigrid method 
converges at a speed independent of the number of unknowns and the interface 
jump, if the special coarsening method defined in ?2 is used and a weighted 
finite-level smoothing is adopted. 

Let Ql = (0, 1/2)x(O, 1) and Q22 = (1/2, 1)x(O, 1) be the two subdomains 
of Q = (0, 1) x (0, 1) cut by a vertical line F= {(xI, X2) E Qlxl = 1/2}. Let 
a(xl, x2) be a discontinuous function which has two positive, constant values 
on the two subdomains. We consider the following interface problem: 

-aAuu=f in 2,U 22, 
(6.1) u=0 onaQ, 

[u] = [a du/dn] = 0 across F, 
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C: D: E: 

FIGURE 3. (A) Fini'te element solutilon of (6. 1) on mesh (C'); 
(B) Nodal error on mesh (C') when 'interface matches a grid line; 

(C) Error on (C') , the interface does not match any grid l'ine; 
(D) Error on (D') (no match). The mesh 'is mapped by x 1 2; 
(E) Error on (E') (no match). The mesh is mapped by x 16; 
(F) Error on (F') (no match). The mesh 'is mapped by X2. 

where [v] denotes the jump in a quantity v across the interface 1, and n is 
the normal to the interface. Without loss of generality, we can scale (6.1) such 
that 

a(x1, x2) =a> O in 1 and a(x1 x2) = I1 in12. 

Since there are no cross interfaces and the interface intersects the boundary 
at a right angle, the solution u of (6.1) is an H2 function in Q1 and n2 
separately, if f E L2(Q) (cf. [15] and [2]). Therefore, if the two subdomains are 
triangulated separately, then the optimal convergence order would be obtained 
for the finite element methods in solving (6.1). We will show that the multigrid 
methods have constant convergence rate (independent of the jump of a(x) 
across 7) for solving such finite element equations. 

We let { gk} be nested, uniform meshes like 7 in Figure 2. To cover 
the interface by grid lines, the mesh size of gk is set to hk 1/(1io2k) for 
some positive integer io Let Vk be the space of continuous, piecewise linear 
functions defined on . The bilinear form associated with (6.1) is a(u, v) = 
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fa a(x)Vu. Vv dx . The discrete bilinear form (2.4) is replaced by 

(6.2) (u, V)k = Z h2(n)u(n)v(n) Vu, v E Vk, 
nEAk 

where 
f a if n E Ql, 

a(n)= (a+l1)/2 if n ( I, 
I 1 if ne,2 

It is necessary to have a(x) involved in (*, * )k in order to have the conver- 
gence rate independent of a(x) . This can be seen from the smoothing iteration 
(2.9). The discrete norms III Ills, k and the multigrid algorithm are defined as 
in ?2. We note IkV = v Vv E Vk-l, since we have Vk-l c Vk here. 

Similarly to the nested case considered in ?5, we introduce two auxiliary grids 
9T and Td (see Figure 2) to link 9Tk_ and 9k. However, the perturbation 
on the diffusion coefficient this time occurs only in a part of the domain, which 
requires special consideration. The key issue is to prove (3.5), which is implied 
by UT(MlM2 + M2Mi)U > 0 (see the proof of (3.5)). We will keep M2 in 
the same form as in (3.6) by. scaling the basis appropriately as follows. Let 

{I(n} C Vk be the nodal basis with nodal value (a(n)h2)-112 where the nodes 
'ke are listed along the xi -direction first, and then along the other direction, as 

in ?5. Let u = E Un(n E Vk and U be its coefficient vector. We have by (6.2) 

(U, V)k = VTU, (a(u, oPn)) = h-2A- 1/2(Al + A2)A- 1/2 U. 

Here A1 = diag(D1), a block diagonal matrix, A2 = tridiag(-D2, 2D2, -D2), 
a block tridiagonal matrix, and A3 = diag(D2), a block diagonal matrix, where 
D1 and D2 are respectively 
(6.3) 

2a -a ~a 

-a 2a -a I I a 
+ 

-a a+1 -1 a2 
-1 2 -111 

Denote the semipositive definite matrix A_ 1/2A1A_ 1/2 by M1; then, if w = 

Aku, its coefficient vector is W = h,72(Mi + M2)U. The matrix M2 is block 
tridiagonal of the form (-I, 2I, -I) (see (3.6)). Here the operator Ak is 
again defined by (Aku, V)k = a(u, v). We thus obtain the corresponding form 
of (3.7) as 

IIIUIII2,k = (AkU, AkU)k = WTW = 4UT(Ml +M2)(M1 +M2)U 
(6.4) 1k 

? hUT(M2 + M2)U, 
Tk 

by Lemma 3.2. The rest of the proof in Lemma 3.3 remains the s'ame. We 
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Interface 

FIGURE 4. Two level grids for (6.1) where the jump is not on a 
grid line 

certainly need to repeat the arguments used in the first case of ?5. Since the dif- 
fusion coefficient a(x) is added to the discrete bilinear forms ( *, *),k Lemma 
4.1 and Corollary 4.2 follow immediately. 

Theorem 6.1 (Multilevel W-cycles for the interface problem). Let the multigrid 
method be defined as above and in ?2. Let p = 2 in the definition of q in (2.10). 
For any 0 < y < 1, there is an integer m independent of the level number k 
and the a(x) in (6.1) such that 

|||Uk -WM+1 lill, k < Yl llUk -W01111, k 

where Uk, wi, and q are defined in (2.8)-(2.1 1). 

We next consider the case where the interface is between grid lines and the 
grids are of high aspect ratios near the interface (see Figure 4). This would be 
somewhat practical because, for example, the interfaces may move with time in 
many application problems. As we have seen in Figure 3(C), the error needs to 
be reduced near F. One way to increase the approximability of finite elements 
is to use augmented finite elements (cf. [4] and [19]), which will not be discussed 
here. One could also use small triangles near the interface line, but this is not 
economical. A mesh finer in the cross-interface direction would increase the 
approximability of finite element solutions in this particular case. Let us check 
the data in Table 3 (next page). Here the exact solution is shown in Figure 
3(A). Column 7 and column 9 in Table 3 indicate that the degenerate-mesh 
finite element solutions have the optimal order (in terms of the number of 
unknowns) of convergence. In column 3 of Table 3, we have uniform grids 
where the interface matches the center grid line. The nodal errors of the three 
cases can be compared in Figure 3(E), Figure 3(F), and Figure 3(B). 

As the minimal angle approaches zero, convergence of the standard multigrid 
method would be arbitrarily slow (see column 4 in Table 1). The essential factor 
for the deterioration is that coarse-level corrections can no longer capture the 
low-frequency components of iteration errors which oscillate in the direction of 
larger grid width. In the model case, a simple but effective modification would 
be to coarsen the meshes only in the xi-direction (see Figure 4). The analysis 
of this multigrid method is almost the same as the previous one in this section. 

Let Vk be the space of piecewise linear, continuous functions on Tk (see 
Figure 4). We list the nodes of 9k, {ni, j}, along the xi -direction first, then 
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TABLE 3. Spectral radii of 2-level multigrid iterative operators 
for (5.1) where e = (8h2)2. Here, h2 is the mesh size in the 
x2-direction. The xi-coordinates of grid points are mapped 
by the mapping (xi - 0.5)0 toward the interface F. The f, 
in IIIu - UkfIIIk = N,-'2 is estimated by the errors on two 
consecutive levels 

Matched, a = 1 Unmatched, a = 1, 1.5 and 2 

grid I2 i 2 - 1112" li 2 111 2 i 2, -l k i 2 2 
k grd IIIUk III,k fi IIIUk IIIk fi IIIUkIIII,k fi IIIUkllll,k f 

1 x 1 0.09375 - 0.07291 - 0.07291 - 0.2791 _ 
2 x2 0.12500 0.55 0.12500 - 0.12500 - 0.12500 _ 
4 x 4 0.17187 1.43 0.17122 1.4 0.17315 1.5 0.15808 0.8 
8 x 8 0.19238 1.91 0.19073 1.6 0.19019 1.5 0.18582 1.6 

16 x 16 0.19805 1.97 0.19653 1.4 0.19708 1.8 0.19560 1.7 
32 x 32 0.19951 1.99 0.19851 1.2 0.19917 1.8 0.19884 1.9 
64 x 64 0.19987 1.99 0.19930 1.2 0.19976 1.8 0.19969 1.9 

128 x 128 0.19997 1.99 0.19966 1.1 0.19993 1.9 0.19992 2.1 

those along the other direction. Let 
(6.5) 

a 

(al +a2 -a2 / f1 

-al2 (a2 + (a3 -al3 fl2 
D1=I . *. . , D2= ..2 

< . ?t~~~~~n- 1 + atn f /n-1 I 

where 

a1 i- hk,i2Hk i+1 hk, i = dist(ni,i, ni 1,j) 

and Hk is the uniform grid width in the x2-direction. The a in (6.5) de- 
pends on the location of the interface between two nearest vertical grid lines 
(see (6.2) and Figure 4). Let the coefficient vector of u = E ui,(pi,j be U. 
Let (A1 + A2)U := (a(u, pi,j)), where p,j denotes the standard nodal ba- 
sis function at nij,. Then A1 = diag(ADI), a block diagonal matrix, and 
A2 = tridiag(-AD2, 2AD2, -AD2), a block tridiagonal matrix. 

The bilinear form associated with (6.1) is again a(u, v) = a aVu Vv dx. 
But the discrete inner product (6.2) is modified to, according to (6.5) and re- 
flecting the fih 

(6.6) (u, V)k = S a(ni,j) !k u(n1,j)v(n,j) Vu, V E Vk, 
n, j,, 
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where a(ni,j) is a diagonal element of A defined in (6.5). We assume 

(6.7) hk,i < Hk and c < h <c Vnni,j E kA 
hk, 1+1 

Here we do not allow a sudden change of the xl-width. As in (6.4), if we 
scale the nodal basis by (a(ni,j)H//,)12, we again get by Lemma 3.2 the 
corresponding form of (3.6), 

1 T~1 -2 
IIIU112,k = 4U(M1 +M2)(M1 +M2)U > 4UT(Ml +M)U, 

where M2 = tridiag(-I, 2I, -I) as before, and M1 is a positive semidef- 
inite, block tridiagonal matrix. It is essential in this analysis to get M2 = 
tridiag(-I, 2I, -I) by a careful scaling, in order to show (3.5). Therefore, by 
the slow variance in the triangle size (6.7), we can repeat the proof in ??3-4 and 
obtain the following theorem. 

Theorem 6.2 (2-level method for meshes with skinny triangles near the inter- 
face). Let the multigrid method be defined as above and in ?2. Let q = q in 
(2.10). For any 0 < y < 1, there is an integer m independent of the level 
number k and the a(x) in (6.1) such that 

IllUk - Wm+1 II 1, k ? YIIIUk - WOIII 1, k 

where Uk, wi, q, and q are defined in (2.8)-(2.1 1). 

One may include the refinement method for nested meshes here. Near the in- 
terface, where skinny triangles occur, one can use those coarser triangles which 
are coarser in one direction. Away from the interface, one can use the nested 
grids (each coarse triangle consists of four subtriangles). Between the two re- 
gions, one can use the technique of the nonnested multigrid method in [24] to 
get a smooth transition. 

7. A CONVECTION-DOMINATED CONVECTION-DIFFUSION PROBLEM 

We will study two finite element methods for solving a model convection- 
dominated convection-diffusion problem. To dominate the convection term 
numerically, we choose the finite elements in such a way that the mesh size 
in the direction of convection is smaller than e, the diffusion coefficient. For 
economical reasons, the mesh size in the crosswind direction is not that small. 
This results in high-aspect-ratio meshes. Such finite elements avoid the wiggles 
of the Galerkin method with quasiuniform finite elements (see Figure 5 on next 
page). Three finite element solutions for the perturbation problem (7.1) with 
f = 1 are shown in Figure 5. Clearly, the solution on the high-aspect-ratio 
grid is much better. Since the compensation of the streamline diffusion method 
to the right-hand side does not change the source vector (see (7.12)) in this 
test case, tht streamline diffusion method just adds an artificial diffusion in the 
streamline direction. For references of the streamline diffusion method, readers 
can consult [14] and the references therein. In this section, we will show that 
a nonnested multigrid iteration has a constant convergence rate which does not 
depend on the perturbation parameter, nor on the grid size and the aspect ratio. 
We will show briefly that the special nonnested multigrid method would also 
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/_I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

FIGURE 5. Finite element solutions for (7.1). Left, the Galerkin 
method on a uniform mesh; Center, the streamline diffusion 
method on a uniform mesh; Right, the Galerkin method on a 
high-aspect-ratio mesh 

converge at a constant rate when applied with the streamline diffusion method. 
A purpose of this section is to show that the coarse-level correction can catch 
slowly varying components of the iteration errors even in very nonsymmetric, 
ill-conditioned linear systems. 

We will consider a steady-state convection-dominated convection-diffusion 
problem: 

(7.1) u= 0 on 9Q, 

where e is a positive constant. We define finite element spaces {Vk} as in 
?2, where triangular meshes have grid widths Hk and hk in the x2- and xl- 
directions, respectively. We require that 

(7.2) hk = dke and hk = pkHk for some 5k < I and Pk < 1, 

and that the coarse-level meshes are only coarser in the xl-direction, as shown 
in Figure 1, i.e., hk = hk1l/2, Hk = Hk-l. Similarly to the principle of 
the streamline diffusion method, choosing a small grid width in the convection 
direction could control the nonsymmetric term a, u to result in an M-matrix 
for the algebraic system. Owing to the structure of the crosswind boundary 
layer, one may also want Hk < \. If one also requires Hk < e, one could 
prove convergence of the multigrid method by the elliptic regularity (cf. [ 16] for 
example, and cf. [20] for the symmetric case) and by standard approximation 
theory [11]. However, the convergence rate of the multigrid method obtained in 
this way would depend on the singular perturbation e, while our theory avoids 
such a dependence. 

We remark that the effect of employing a small grid width in the xl -direction 
resembles that of choosing a grid width smaller than e in the following 1-D 
problem: 

eu" + u'= f in Q = (0, 1), u(0) = u(1) = 0. 
The central finite difference method and the linear finite element method pro- 
duce the same stiffness matrix for the 1 -D problem above. In [ 11 ] and [ 12], W. 
Hackbusch has shown for the 1-D problem that the contraction number of two- 
level multigrid methods for the centered finite difference problems is bounded 
away from 1 independent of the grid width if the grid width is smaller than e . 
An economical way to extend Hackbusch's method to 2-D problems would be 
the one described above. However, if the perturbation parameter is too small, 
making the grid size smaller than e would not be practical. One may use the 
streamline diffusion method then. A mesh with hk < e and Hk < W would 
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be effective in computation as it provides both stability and resolution of the 
boundary layer. A multigrid method was studied in [23] for solving Galerkin 
spectral equations arising from (7.1) with periodic boundary conditions. 

The finite element formulation of (7.1) reads as follows: Find Uk such that 

(7.3) ea(uk, v) + b(uk, v) = (f, v) Vv E Vk, 

where a(u, v) = fa Vu * Vv dx, b(u, v) = fa 1uv dx, and (u, v) = fa uv dx. 
The discrete inner product ('*, *)k is again defined in (2.4). The multigrid 
method consists of two steps (cf. (2.9) and (2.10)). The fine-level smoothing will 
be defined later. The coarse-level residual problem (cf. (2.1 1)) is now defined 
as: Find q E Vlk- such that 

(7.4) ea(q, v) + b(q, v) = (f, v)-ea(wm, v)-b(wm, v) VV E Vk-1, 

where Vkll c Vk is the image space Ik(Vk-l) as in (2.6). In a two-level method, 
the corrected iterative solution (cf. (2.10)) is wm+l = wm + q. As before, with 
the iteration error denoted by ej = Uk - Wj , the two-level coarse-level correction 
generates em+l = em - q, where q is defined by (7.4) and satisfies 

(7.5) ea(q, v) + b(q, v) = ea(em, v) + b(em, v) VvE VklE 

Lemma 7.1. The following estimates hold: 

(7.6) IIIem+1111 ,k < CHk(l + 3k)IIIemIII2,k 

(7.7) IIIem+1lii 1k < (1 + p2/4 + C3k)IIIemIIIj,k'k 
where the constant C is independent of e and k. Here the discrete norms 
11I I* 1., k are defined in (2.5), and 3k and Pk are defined in (7.2). 
Proof. From b(u, v) = 0 and (7.5), we get 

(7.8) e IIem+ 1III k = eIIlem - Iql k =ea(em - q, em - #) + b(em - 5 em - q) 
= ea(em - q, em - IkIk-1em) + b(em - q, em - IkIk-Iem) . 

By the triangle inequality, the first term in (7.8) is 

(7.9) a(em - q, em - IkIk-lem) < Illem -Iql11,kIIIem - IkIk-jemIjII,k. 

By (4.1), Lemma 3.1, and Lemma 3.3, we get 

(7.10) Illem -IkIk-jemIIIj,k < CHkIIIemIII2,k. 

By the definition of b( , * ), we can estimate the second term in (7.8) as 

Ib(em - q, IkIk-1em - em)I < lem - qIH1(O)I|IkIk-1em - emIIL2(a) 

< (1?em - qllll kChkHlk IIIem - IkIk-jemIIIo,k , 

where the following fact is used: IIUIIL2(a) < ChkHr-1IIuIIIO,k for all u E Vk, 
which can be proved easily by the definition (2.4). Applying (4.1) again, we 
conclude from (7.10) that 

(7.12) Illem - IkIk-jemIIIo,k < CHkIllem - IkIk-jemIIIj,k < CHkjjjemIII2,k. 

Combining (7.8)-(7.12), we obtain (7.6). Applying definition (4.2) to the 
term JIIemIkIk-jemIlj,k in (7.9) and (7.12), we can also prove (7.7) by (7.8)- 
(7.12). o 
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To obtain a constant rate of convergence, by (7.6), the fine-level smoothing 
needs to provide that 

(7.13) IIIemIII2,k < CHr1IIIeoIIIl,k. 

If one performs the fine-level smoothing on the normal system to deal with 
nonsymmetry as in [6], for example, (7.13) could be obtained, but the constant 
in (7.13) would depend on e. In the following, we consider a multigrid method 
with one fine-level smoothing. J. Mandel [17] has considered such a multigrid 
method for nonsymmetric elliptic problems, but where the b(. , *) is only a 
small perturbation to the system, since the mesh is required to be fine enough. 
We note that the b( *, * ) and the ea( *, * ) are of the same order of magnitude 
for the present case. One iteration as follows will be performed in the fine-level 
smoothing (cf. (2.9)): 

(7.14) (wl-wo, v)k =e711t((f,v)-ea(wo,v)-b(wo,v)) VVEVk, 

where A- (< CHk2, by Corollary 4.2) is as in (2.9). The error after one 
smoothing is 

(7.15) el = (I - -lAk -e1L'A Bk)eO, 

where (AkU, V)k := a(u, v) and (Bku, V)k := b(u, v). By expanding eo as a 
linear combination of eigenvectors of Ak, it is standard to get (cf. (4.14) and 
[17]) 

(7.16) 111(1 - AjjAk)eOI112 k + ljjII(I-Ak Ak)eoIII2,k < IIIeOIIl,k 
2 

To estimate the effects of b( , *) to the smoothing (7.14), we can proceed 
as follows: 

IIIBkeoIIIj,k sup (BkeO, AJkV)k sup b(eo AJk v) 

< sup IlAleoIIL2(Q)II|Ak v I I L2 (a) 

< sup IIIeoIl,kChkHk IlAkVIIIO,k 
111VIII,,k=1 

? 
ChkHjj-i sup IIIeoIIIl,k111A 

'2 
VII0o,k 

IIIVIIIj,k=1 

= ChkH,1 IIIeoIIIl ,k' j = 1, 2. 

Therefore, by (7.15), one gets 

(7.17) IIIelIIII k ? (111(I- Ak)eoIIIk k + 6 1k |IIBkeoIIIj,k) 

< 111(1 - A-jAk)eoIII2 k + DjIIIeoIII,k e 

where Dj = 2(C3kH,') + (C3kH-J)2 j = 15 2. 

Theorem 7.2. The contraction number of the two-level multigrid method defined 
by (7.4) and (7.14) is bounded by y defined by 

(7.18) Y = Dk+p +C 
Do0+ I +p2/4 +C 
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where Pk and 3k are as in (7.2), C as in (7.6), and Do = C2H2(l + 3k)2 k i 
In fact, Do< 4. 
Proof. We need to show that IIIe2IIIl,k < yllleollIl k . By (7.17) and (7.16), 

(7.19) e1l2I,k ? 111(1 k Ak)eOI2, k+ D2IIIeoIII ,k 
? Ak(IIIeOIIIl,k - 11(I - Ak)eoIIIA k) + D2IIIe0oIII2ke 

Applying (7.17) for j = 1 again to the above estimate, we obtain that 

I7O I IIelII k 12 4(IIIeoIII2,k + IIIeoIII2, 11II 1II2k +D IIIeoIII2, (7.20) 12 k < Ak(llOl l k +DIlil?l lk 
- I-lle, 1,Il k) + D2 |l,elIlsk 

< Ak(l + D1 + CHk2D2)IIIee0oIII -(1 + p2 /4 + Ck)1 IIIe2III1,k, 

where (7.7) with m = 1 is used in the last step. Combining (7.20) and (7.6) 
with m = 1, we obtain that 111e2IIIl,k < yllleollll ,k. We omit the numerical 
estimate of Do and of the other constants in (7.18). 0 

By letting Pk in (7.18) be small enough, the two-level multigrid method 
converges at a rate y < 1. One can easily analyze the multilevel method by 
Theorem 7.2 following the work of Mandel [17]. The convergence rates of two- 
level multigrid methods are listed in Table 4. We can see by column 7 in Table 
4 that Theorem 7.2 is verified. In fact, the multigrid method converges more 
rapidly in the presence of the nonsymmetric term b(., * ), compared with the 
data in column 6 of Table 1. From column 5 of Table 4, we notice that the 
convergence of the nested multigrid method deteriorates. We are able to extend 
our theory above to cover the nested case (see column 2 of Table 4), similarly 
as we did in ??5-6. 

We now discuss briefly the multigrid solver for the finite element equations 
arising from the streamline diffusion discretization of (7.1). In the streamline 
diffusion method, we quasiuniformly triangulate the domain and we replace the 
test function v in (7.3) by v + cahalv , where h is the mesh size. The resulting 
finite element equations are 

(7.21) (e + ah)(OlUk, Olv) + (O2Uk, 02V) + (alUk, V) 
(7.21) =(f,v+ahalv) VVEVk. 

The stiffness matrices of (7.21) and (7.3) are of the same type. The diffusion 
in the direction of the streamline (xi -direction) is much bigger than that in the 
other direction. This is the same situation as for finite elements on the above 

TABLE 4. Spectral radii of 2-level multigrid iterative operators 
for (7.1) 

p(CS) (nested meshes) p(CS) (nonnested meshes) 
grid e = hk e = h grid e = hk grid e = hk e = h2 

10 x 10 0.7089 1.4015 10 x 8 0.7619 10 x 8 0.5851 2.2447 
14 x 14 0.7164 4.0869 14 x 8 0.8411 14 x 8 0.4385 2.3346 
18 x 18 0.7191 8.1342 18 x 8 0.8847 18 x 8 0.4241 3.0278 
22 x 22 0.7204 > 1 22 x 8 0.9102 22 x 8 0.4472 3.9692 
26 x 26 0.7209 > 1 26 x 8 0.9259 26 x 8 0.4596 4.6948 
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high-aspect-ratio meshes. Thus, the coarse-level correction needs to correct the 
low-frequency error in the x2-direction completely, and we need the special 
multigrid method. We can repeat the above analysis for (7.3) to get the following 
theorem. 

Theorem 7.3. The two-level multigrid method defined by (7.4) and (7.14) con- 
verges at a constant rate independent of e when solving the streamline diffusion 
finite element equations (7.21). 
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